2,106 research outputs found

    Kondo effect in CeXc_{c} (Xc_{c}=S, Se, Te) studied by electrical resistivity under high pressure

    Get PDF
    We have measured the electrical resistivity of cerium monochalcogenices, CeS, CeSe, and CeTe, under high pressures up to 8 GPa. Pressure dependences of the antiferromagnetic ordering temperature TNT_{N}, crystal field splitting, and the lnT\ln T anomaly of the Kondo effect have been studied to cover the whole region from the magnetic ordering regime at low pressure to the Fermi liquid regime at high pressure. TNT_{N} initially increases with increasing pressure, and starts to decrease at high pressure as expected from the Doniach's diagram. Simultaneously, the lnT\ln T behavior in the resistivity is enhanced, indicating the enhancement of the Kondo effect by pressure. It is also characteristic in CeXc_{c} that the crystal field splitting rapidly decreases at a common rate of 12.2-12.2 K/GPa. This leads to the increase in the degeneracy of the ff state and further enhancement of the Kondo effect. It is shown that the pressure dependent degeneracy of the ff state is a key factor to understand the pressure dependence of TNT_{N}, Kondo effect, magnetoresistance, and the peak structure in the temperature dependence of resistivity.Comment: 9 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp

    Development of a Consensus Statement for the Definition, Diagnosis, and Treatment of Acute Exacerbations of Idiopathic Pulmonary Fibrosis Using the Delphi Technique.

    Get PDF
    © 2015, The Author(s).Introduction: There is a lack of agreed and established guidelines for the treatment of acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF). This reflects, in part, the limited evidence-base underpinning the management of AE-IPF. In the absence of high-quality evidence, the aim of this research was to develop a clinician-led consensus statement for the definition, diagnosis and treatment of AE-IPF. Methods: A literature review was conducted to obtain published material on the definition and treatment of AE-IPF. The results of this review were circulated to an online panel of clinicians for review. Statements were then shared with ten expert respiratory clinicians who regularly treat patients with IPF. A Delphi technique was then used to develop a consensus statement for the definition, diagnosis and treatment of AE-IPF. During the first round of review, clinicians rated the clarity of each statement, the extent to which the statement should be included and provided comments. In two subsequent rounds of review, clinicians were provided with the group median inclusion rating for each statement, and any revised wording of statements to aid clarity. Clinicians were asked to repeat the clarity and inclusion ratings for the revised statements. Results: The literature review, online panel discussion, and face-to-face meeting generated 65 statements covering the definition, diagnosis, and management of AE-IPF. Following three rounds of blind review, 90% of clinicians agreed 39 final statements. These final statements included a definition of AE-IPF, approach to diagnosis, and treatment options, specifically: supportive measures, use of anti-microbials, immunosuppressants, anti-coagulants, anti-fibrotic therapy, escalation, transplant management, and long-term management including discharge planning. Conclusion: This clinician-led consensus statement establishes the ‘best practice’ for the management and treatment of AE-IPF based on current knowledge, evidence, and available treatments. Funding: Boehringer Ingelheim Ltd., Bracknell, West Berkshire, UK

    Numerical prediction of cavitation erosion in cavitating flow

    Full text link
    In this study bubble behavior in cavitating flow is analyzed and prediction of cavitation erosion in 2D cavitating flow around ClarkY 11.7 % hydrofoil at several cavitation is performed by impact pressure induced by bubble collapse. Our numerical method predicts that the impact energy is small if variation of cavitating flow is small and that the position of peak impact energy moves downstream with the decrease in cavitation number until the maximum sheet cavity length becomes larger than chord length. When the maximum sheet cavity length becomes larger than chord length, there are not obvious peak values and relatively weak erosion occurs. And it is found that high impact pressures are mainly induced by bubbles in a cloud and in the vicinity of sheet cavity termination during a cloud collapse. Therefore large impact energy occurs when the cloud cavity collapses near the hydrofoil, the sheet cavity termination is on the hydrofoil and the number of bubble is large in these cavities.http://deepblue.lib.umich.edu/bitstream/2027.42/84264/1/CAV2009-final67.pd

    Investigation of environmental change pattern in Japan

    Get PDF
    The author has identified the following significant results. A detailed land use classification for a large urban area of Tokyo was made using MSS digital data. It was found that residential, commercial, industrial, and wooded areas and grasslands can be successfully classified. A mesoscale vortex associated with large ocean current, Kuroshio, which is a rare phenomenon, was recognized visually through the analysis of MSS data. It was found that this vortex affects the effluent patterns of rivers. Lava flowing from Sakurajima Volcano was clearly classified for three major erruptions (1779, 1914, and 1946) using MSS data

    Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam

    Get PDF
    We report the observation of an exotic radiation (unconventional Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical origin of the exotic radiation is direct excitation of the photonic bands by an ultra-relativistic electron beam. The spectrum of the exotic radiation follows photonic bands of a certain parity, in striking contrast to the conventional Smith-Purcell radiation, which shows solely a linear dispersion. Key ingredients for the observation are the facts that the electron beam is in an ultra-relativistic region and that the photonic crystal is finite. The origin of the radiation was identified by comparison of experimental and theoretical results.Comment: 4 pages, 5 figure

    High-Temperature Transport Properties of Yb4−xSmxSb3

    Get PDF
    Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K
    corecore